Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Theranostics ; 14(6): 2573-2588, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38646638

RESUMO

Background: Hypofractionated radiotherapy (hRT) can induce a T cell-mediated abscopal effect on non-irradiated tumor lesions, especially in combination with immune checkpoint blockade (ICB). However, clinically, this effect is still rare, and ICB-mediated adverse events are common. Lenalidomide (lena) is an anti-angiogenic and immunomodulatory drug used in the treatment of hematologic malignancies. We here investigated in solid tumor models whether lena can enhance the abscopal effect in double combination with hRT. Methods: In two syngeneic bilateral tumor models (B16-CD133 melanoma and MC38 colon carcinoma), the primary tumor was treated with hRT. Lena was given daily for 3 weeks. Besides tumor size and survival, the dependence of the antitumor effects on CD8+ cells, type-I IFN signaling, and T cell costimulation was determined with depleting or blocking antibodies. Tumor-specific CD8+ T cells were quantified, and their differentiation and effector status were characterized by multicolor flow cytometry using MHC-I tetramers and various antibodies. In addition, dendritic cell (DC)-mediated tumor antigen cross-presentation in vitro and directly ex vivo and the composition of tumor-associated vascular endothelial cells were investigated. Results: In both tumor models, the hRT/lena double combination induced a significant abscopal effect. Control of the non-irradiated secondary tumor and survival were considerably better than with the respective monotherapies. The abscopal effect was strongly dependent on CD8+ cells and associated with an increase in tumor-specific CD8+ T cells in the non-irradiated tumor and its draining lymph nodes. Additionally, we found more tumor-specific T cells with a stem-like (TCF1+ TIM3- PD1+) and a transitory (TCF1- TIM3+ CD101- PD1+) exhausted phenotype and more expressing effector molecules such as GzmB, IFNγ, and TNFα. Moreover, in the non-irradiated tumor, hRT/lena treatment also increased DCs cross-presenting a tumor model antigen. Blocking type-I IFN signaling, which is essential for cross-presentation, completely abrogated the abscopal effect. A gene expression analysis of bone marrow-derived DCs revealed that lena augmented the expression of IFN response genes and genes associated with differentiation, maturation (including CD70, CD83, and CD86), migration to lymph nodes, and T cell activation. Flow cytometry confirmed an increase in CD70+ CD83+ CD86+ DCs in both irradiated and abscopal tumors. Moreover, the hRT/lena-induced abscopal effect was diminished when these costimulatory molecules were blocked simultaneously using antibodies. In line with the enhanced infiltration by DCs and tumor-specific CD8+ T cells, including more stem-like cells, hRT/lena also increased tumor-associated high endothelial cells (TA-HECs) in the non-irradiated tumor. Conclusions: We demonstrate that lena can augment the hRT-induced abscopal effect in mouse solid tumor models in a CD8 T cell- and IFN-I-dependent manner, correlating with enhanced anti-tumor CD8 T cell immunity, DC cross-presentation, and TA-HEC numbers. Our findings may be helpful for the planning of clinical trials in (oligo)metastatic patients.


Assuntos
Linfócitos T CD8-Positivos , Modelos Animais de Doenças , Lenalidomida , Hipofracionamento da Dose de Radiação , Animais , Lenalidomida/farmacologia , Lenalidomida/uso terapêutico , Camundongos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Células Dendríticas/imunologia , Células Dendríticas/efeitos dos fármacos , Linhagem Celular Tumoral , Terapia Combinada/métodos , Feminino , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/imunologia , Melanoma Experimental/radioterapia , Melanoma Experimental/terapia , Neoplasias do Colo/imunologia , Neoplasias do Colo/radioterapia , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/terapia
2.
Res Sq ; 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-38014120

RESUMO

We prospectively evaluated the effects of stereotactic body radiotherapy (SBRT) on circulating immune cells. Patients with oligo-metastatic and oligo-progressive pulmonary lesions were treated with SBRT with (cSBRT) or without (SBRT group) concurrent systemic treatment (chemotherapy or immune checkpoint blockade) using different fractionation regimes. Immunoprofiling of peripheral blood cells was performed at baseline, during, at the end of SBRT, and at the first and second follow-ups. The study accrued 100 patients (80 with evaluable samples). The proportion of proliferating CD8+ T-cells significantly increased after treatment. This increase remained significant at follow-up in the SBRT group, but not in the cSBRT group and was not detected with doses of >10Gy per fraction indicating that lower doses are necessary to increase proliferating T-cells' frequency. We detected no favorable impact of concurrent systemic treatment on systemic immune responses. The optimal timing of systemic treatment may be post-SBRT to leverage the immune-modulating effects of SBRT.

3.
J Immunother Cancer ; 11(8)2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37640480

RESUMO

BACKGROUND: Localized radiotherapy (RT) can cause a T cell-mediated abscopal effect on non-irradiated tumor lesions, especially in combination with immune checkpoint blockade. However, this effect is still clinically rare and improvements are highly desirable. We investigated whether triple combination with a low dose of clinically approved liposomal doxorubicin (Doxil) could augment abscopal responses compared with RT/αPD-1 and Doxil/αPD-1. We also investigated whether the enhanced abscopal responses depended on the mitochondrial DNA (mtDNA)/cyclic GMP-AMP synthase (cGAS)/stimulator of interferon genes (STING)/IFN-I pathway. MATERIALS/METHODS: We used Doxil in combination with RT and αPD-1 in two tumor models (B16-CD133 melanoma and MC38 colon carcinoma) with mice bearing two tumors, only one of which was irradiated. Mechanistic studies on the role of the mtDNA/cGAS/STING/IFN-I axis were performed using inhibitors and knockout cells in vitro as well as in mice. RESULTS: Addition of a single low dose of Doxil to RT and αPD-1 strongly enhanced the RT/αPD-1-induced abscopal effect in both models. Complete cures of non-irradiated tumors were mainly observed in triple-treated mice. Triple therapy induced more cross-presenting dendritic cells (DCs) and more tumor-specific CD8+ T cells than RT/αPD-1 and Doxil/αPD-1, particularly in non-irradiated tumors. Coincubation of Doxil-treated and/or RT-treated tumor cells with DCs enhanced DC antigen cross-presentation which is crucial for inducing CD8+ T cells. CD8+ T cell depletion or implantation of cGAS-deficient or STING-deficient tumor cells abolished the abscopal effect. Doxorubicin-induced/Doxil-induced IFNß1 markedly depended on the cGAS/STING pathway. Doxorubicin-treated/Doxil-treated tumor cells depleted of mtDNA secreted less IFNß1, of the related T cell-recruiting chemokine CXCL10, and ATP; coincubation with mtDNA-depleted tumor cells strongly reduced IFNß1 secretion by DCs. Implantation of mtDNA-depleted tumor cells, particularly at the non-irradiated/abscopal site, substantially diminished the Doxil-enhanced abscopal effect and tumor infiltration by tumor-specific CD8+ T cells. CONCLUSIONS: These data show that single low-dose Doxil can substantially enhance the RT/αPD-1-induced abscopal effect, with a strong increase in cross-presenting DCs and CD8+ tumor-specific T cells particularly in abscopal tumors compared with RT/αPD-1 and Doxil/αPD-1. Moreover, they indicate that the mtDNA/cGAS/STING/IFN-I axis is important for the immunogenic/immunomodulatory doxorubicin effects. Our findings may be helpful for the planning of clinical radiochemoimmunotherapy trials in (oligo)metastatic patients.


Assuntos
Linfócitos T CD8-Positivos , DNA Mitocondrial , Animais , Camundongos , DNA Mitocondrial/genética , Mitocôndrias , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico
4.
Nat Commun ; 14(1): 2087, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-37045833

RESUMO

Combination of radiation therapy (RT) with immune checkpoint blockade can enhance systemic anti-tumor T cell responses. Here, using two mouse tumor models, we demonstrate that adding long-acting CD122-directed IL-2 complexes (IL-2c) to RT/anti-PD1 further increases tumor-specific CD8+ T cell numbers. The highest increase (>50-fold) is found in the blood circulation. Compartmental analysis of exhausted T cell subsets shows that primarily undifferentiated, stem-like, tumor-specific CD8+ T cells expand in the blood; these cells express the chemokine receptor CXCR3, which is required for migration into tumors. In tumor tissue, effector-like but not terminally differentiated exhausted CD8+ T cells increase. Consistent with the surge in tumor-specific CD8+ T cells in blood that are migration and proliferation competent, we observe a CD8-dependent and CXCR3-dependent enhancement of the abscopal effect against distant/non-irradiated tumors and find that CD8+ T cells isolated from blood after RT/anti-PD1/IL-2c triple treatment can be a rich source of tumor-specific T cells for adoptive transfers.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias , Camundongos , Animais , Interleucina-2 , Neoplasias/radioterapia , Subpopulações de Linfócitos T , Anticorpos , Modelos Animais de Doenças
5.
NPJ Precis Oncol ; 7(1): 24, 2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36864234

RESUMO

We performed a prospective study of circulating immune cell changes after stereotactic body radiotherapy (SBRT) in 50 early-stage NSCLC patients. We found no significant increase in CD8+ cytotoxic T lymphocytes at first follow-up (the primary endpoint) but detected a significant increase in expanding Ki-67+CD8+ and Ki-67+CD4+ T-cell fractions in patients treated with 10 Gy or less per fraction. SBRT can induce significant expansion in circulating effector T-cells immediately post-treatment.

6.
Clin Cancer Res ; 29(3): 667-683, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36449659

RESUMO

PURPOSE: Cisplatin is increasingly used in chemoimmunotherapy and may enhance the T cell-dependent radiation-induced abscopal effect, but how it promotes antitumor immunity is poorly understood. We investigated whether and why cisplatin is immunogenic, and the implications for the cisplatin-enhanced abscopal effect. EXPERIMENTAL DESIGN: Cisplatin, carboplatin, and the well-known immunogenic cell death (ICD) inducer oxaliplatin were compared for their potency to enhance the abscopal effect and induce type I IFN (IFN-I) and extracellular ATP, danger signals of ICD. The hypothetical role of necroptosis and associated damage-associated molecular patterns for cisplatin-induced ICD was investigated by inhibitors and knockout cells in vitro and in two tumor models in mice. A novel necroptosis signature for tumor immune cell infiltration and therapy response was developed. RESULTS: Cisplatin enhanced the abscopal effect more strongly than oxaliplatin or carboplatin. This correlated with higher induction of IFN-I and extracellular ATP by cisplatin, in a necroptosis-dependent manner. Cisplatin triggered receptor-interacting protein kinase 3 (RIPK3)-dependent tumor cell necroptosis causing cytosolic mitochondrial DNA (mtDNA) release, initiating the cyclic GMP-AMP synthase-stimulator of interferon genes pathway and IFN-I secretion promoting T-cell cross-priming by dendritic cells (DC). Accordingly, tumor cell RIPK3 or mtDNA deficiency and loss of IFN-I or ATP signaling diminished the cisplatin-enhanced abscopal effect. Cisplatin-treated tumor cells were immunogenic in vaccination experiments, depending on RIPK3 and mtDNA. In human tumor transcriptome analysis, necroptotic features correlated with abundant CD8+ T cells/DCs, sparse immunosuppressive cells, and immunotherapy response. CONCLUSIONS: Cisplatin induces antitumor immunity through necroptosis-mediated ICD. Our findings may help explain the benefits of cisplatin in chemo(radio)immunotherapies and develop clinical trials to investigate whether cisplatin enhances the abscopal effect in patients.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Camundongos , Animais , Cisplatino/farmacologia , Oxaliplatina/farmacologia , Carboplatina , Necroptose , Antineoplásicos/farmacologia , Neoplasias/tratamento farmacológico , DNA Mitocondrial , Trifosfato de Adenosina
7.
Cancer Lett ; 537: 215680, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35461758

RESUMO

This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal). This article has been retracted at the request of the Editor-in-Chief. Following the publication of the above article, the Editor was notified that an error occurred in which all images were published with incorrect versions. The Editor has taken the decision that the manuscript is no longer acceptable in its current form, nor with a corrigendum, as the extensive changes to the figures and publication would lead to ambiguity for our readers. We have therefore made the decision to retract this manuscript from Cancer Letters with the possibility of resubmission and republication of the manuscript in its corrected form after peer review.

8.
Cancer Lett ; 538: 215697, 2022 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-35487310

RESUMO

Metastatic small cell lung cancer (SCLC) is not curable. While SCLC is initially sensitive to chemotherapy, remissions are short-lived. The relapse is induced by chemotherapy-selected tumor stem cells, which express the AC133 epitope of the CD133 stem cell marker. We studied the effectiveness of AC133-specific CAR T cells post-chemotherapy using human primary SCLC and an orthotopic xenograft mouse model. AC133-specific CAR T cells migrated to SCLC tumor lesions, reduced the tumor burden, and prolonged survival in a humanized orthotopic SCLC model, but were not able to entirely eliminate tumors. We identified CD73 and PD-L1 as immune-escape mechanisms and combined PD-1-inhibition and CD73-inhibition with CAR T cell treatment. This triple-immunotherapy induced cures in 25% of the mice, without signs of graft-versus-host disease or bone marrow failure. AC133+ cancer stem cells and PD-L1+CD73+ myeloid cells were detectable in primary human SCLC tissues, suggesting that patients may benefit from the triple-immunotherapy. We conclude that the combination of AC133-specific CAR T cells, anti-PD-1-antibody and CD73-inhibitor specifically eliminates chemo-resistant tumor stem cells, overcomes SCLC-mediated T cell inhibition, and might induce long-term complete remission in an otherwise incurable disease.


Assuntos
Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Animais , Antígeno B7-H1 , Linhagem Celular Tumoral , Humanos , Imunoterapia Adotiva , Neoplasias Pulmonares/patologia , Camundongos , Recidiva Local de Neoplasia , Carcinoma de Pequenas Células do Pulmão/patologia , Carcinoma de Pequenas Células do Pulmão/terapia
9.
Cancers (Basel) ; 13(22)2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34830880

RESUMO

The effects of radiotherapy on systemic immunity remain to be fully characterized in a disease-specific manner. The aim of the study was to examine potential biomarkers of systemic immunomodulation when using radiotherapy for thoracic malignancies. Serial blood samples were collected from 56 patients with thoracic malignancies prior (RTbaseline), during (RTduring) and at the end of radiotherapy (RTend), as well as at the first (FU1) and second follow-up (FU2). The changes in serum levels of IL-10, IFN-γ, IL-12p70, IL-13, IL-1ß, IL-4, IL-6, IL-8, TNF-α, bFGF, sFlt-1, PlGF, VEGF, VEGF-C, VEGF-D and HGF were measured by multiplexed array and tested for associations with clinical outcomes. We observed an increase in the levels of IL-10, IFN-γ, PlGF and VEGF-D and a decrease in those of IL-8, VEGF, VEGF-C and sFlt-1 during and at the end of radiotherapy. Furthermore, baseline concentration of TNF-α significantly correlated with OS. IL-6 level at RTend and FU1,2 correlated with OS (RTend: p = 0.039, HR: 1.041, 95% CI: 1.002-1.082, FU1: p = 0.001, HR: 1.139, 95% CI: 1.056-1.228, FU2: p = 0.017, HR: 1.101 95% CI: 1.018-1.192), while IL-8 level correlated with OS at RTduring and RTend (RTduring: p = 0.017, HR: 1.014, 95% CI: 1.002-1.026, RTend: p = 0.004, HR: 1.007, 95% CI: 1.061-1.686). In conclusion, serum levels of TNF-α, IL-6 and IL-8 are potential biomarkers of response to radiotherapy. Given the recent implementation of immunotherapy in lung and esophageal cancer, these putative blood biomarkers should be further validated and evaluated in the combination or sequential therapy setting.

10.
Cancer Lett ; 520: 385-399, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34407431

RESUMO

This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal). This article has been retracted at the request of the Editor-in-Chief. Following the publication of the above article, the Editor was notified that an error occurred in which all images were published with incorrect versions. The Editor has taken the decision that the manuscript is no longer acceptable in its current form, nor with a corrigendum, as the extensive changes to the figures and publication would lead to ambiguity for our readers. We have therefore made the decision to retract this manuscript from Cancer Letters with the possibility of resubmission and republication of the manuscript in its corrected form after peer review.


Assuntos
5'-Nucleotidase/genética , Antígeno AC133/genética , Antígeno B7-H1/genética , Carcinoma de Pequenas Células do Pulmão/terapia , 5'-Nucleotidase/antagonistas & inibidores , Antígeno AC133/imunologia , Animais , Anticorpos Anti-Idiotípicos/farmacologia , Antígeno B7-H1/antagonistas & inibidores , Linhagem Celular Tumoral , Feminino , Xenoenxertos , Humanos , Imunoterapia Adotiva/tendências , Masculino , Camundongos , Metástase Neoplásica , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/imunologia , Células-Tronco Neoplásicas/patologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/genética , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/uso terapêutico , Carcinoma de Pequenas Células do Pulmão/genética , Carcinoma de Pequenas Células do Pulmão/imunologia , Carcinoma de Pequenas Células do Pulmão/patologia , Linfócitos T/imunologia , Carga Tumoral
11.
Cancer Immunol Immunother ; 69(9): 1823-1832, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32350591

RESUMO

Radiotherapy can elicit abscopal effects in non-irradiated metastases, particularly under immune checkpoint blockade (ICB). We report on two elderly patients with oligometastatic melanoma treated with anti-PD-1 and stereotactic body radiation therapy (SBRT). Before treatment, patient 1 showed strong tumor infiltration with exhausted CD8+ T cells and high expression of T cell-attracting chemokines. This patient rapidly mounted a complete response, now ongoing for more than 4.5 years. Patient 2 exhibited low CD8+ T cell infiltration and high expression of immunosuppressive arginase. After the first SBRT, his non-irradiated metastases did not regress and new metastases occurred although neoepitope-specific and differentiation antigen-specific CD8+ T cells were detected in the blood. A second SBRT after 10 months on anti-PD-1 induced a radiologic complete response correlating with an increase in activated PD-1-expressing CD8 T cells. Apart from a new lung lesion, which was also irradiated, this deep abscopal response lasted for more than 2.5 years. However, thereafter, his disease progressed and the activated PD-1-expressing CD8 T cells dropped. Our data suggest that oligometastatic patients, where a large proportion of the tumor mass can be irradiated, are good candidates to improve ICB responses by RT, even in the case of an unfavorable pretreatment immune signature, after progression on anti-PD-1, and despite advanced age. Besides repeated irradiation, T cell epitope-based immunotherapies (e.g., vaccination) may prolong antitumor responses even in patients with unfavorable pretreatment immune signature.


Assuntos
Melanoma/imunologia , Melanoma/radioterapia , Receptor de Morte Celular Programada 1/imunologia , Idoso , Linfócitos T CD8-Positivos/imunologia , Epitopos de Linfócito T/imunologia , Feminino , Humanos , Imunoterapia/métodos , Masculino , Melanoma/terapia , Radiocirurgia/métodos
12.
Clin Cancer Res ; 26(4): 945-956, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31694834

RESUMO

PURPOSE: There is growing interest in combinations of immunogenic radiotherapy (RT) and immune checkpoint blockade, but clinical responses are still limited. Therefore, we tested the triple therapy with an inhibitor of the indoleamine 2,3-dioxygenase pathway, which like immune checkpoints, downregulates the antitumor immune response. EXPERIMENTAL DESIGN: Triple treatment with hypofractionated RT (hRT) + anti-PD-1 antibody (αPD1) + indoximod was compared with the respective mono- and dual therapies in two syngeneic mouse models. RESULTS: The tumors did not regress following treatment with hRT + αPD1. The αPD1/indoximod combination was not effective at all. In contrast, triple treatment induced rapid, marked tumor regression, even in mice with a large tumor. The effects strongly depended on CD8+ T cells and partly on natural killer (NK) cells. Numbers and functionality of tumor-specific CD8+ T cells and NK cells were increased, particularly early during treatment. However, after 2.5-3 weeks, all large tumors relapsed, which was accompanied by increased apoptosis of tumor-infiltrating lymphocytes associated with a non-reprogrammable state of exhaustion, terminal differentiation, and increased activation-induced cell death, which could not be prevented by indoximod in these aggressive tumor models. Some mice with a smaller tumor were cured. Reirradiation during late regression (day 12), but not after relapse, cured almost all mice with a large B16-CD133 tumor, and strongly delayed relapse in the less immunogenic 4T1 model, depending on CD8+ T cells. CONCLUSIONS: Our findings may serve as a rationale for the clinical evaluation of this triple-combination therapy in patients with solitary or oligometastatic tumors in the neoadjuvant or the definitive setting.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Células Matadoras Naturais/imunologia , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/radioterapia , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/radioterapia , Triptofano/análogos & derivados , Animais , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/efeitos da radiação , Linhagem Celular Tumoral , Quimiorradioterapia , Feminino , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/efeitos da radiação , Neoplasias Mamárias Experimentais/imunologia , Neoplasias Mamárias Experimentais/patologia , Melanoma Experimental/imunologia , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Nus , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Hipofracionamento da Dose de Radiação , Taxa de Sobrevida , Triptofano/farmacologia
13.
Clin Cancer Res ; 25(23): 7243-7255, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31506388

RESUMO

PURPOSE: Localized radiotherapy can cause T-cell-mediated abscopal effects on nonirradiated metastases, particularly in combination with immune checkpoint blockade (ICB). However, results of prospective clinical trials have not met the expectations. We therefore investigated whether additional chemotherapy can enhance radiotherapy-induced abscopal effects in conjunction with ICB. EXPERIMENTAL DESIGN: In three different two-tumor mouse models, triple therapy with radiotherapy, anti-PD-1, and cisplatin (one of the most widely used antineoplastic agents) was compared with double or single therapies. RESULTS: In these mouse models, the response of the nonirradiated tumor and the survival of the mice were much better upon triple therapy than upon radiotherapy + anti-PD-1 or cisplatin + anti-PD-1 or the monotherapies; complete regression of the nonirradiated tumor was usually only observed in triple-treated mice. Mechanistically, the enhanced abscopal effect required CD8+T cells and relied on the CXCR3/CXCL10 axis. Moreover, CXCL10 was found to be directly induced by cisplatin in the tumor cells. Furthermore, cisplatin-induced CD8+T cells and direct cytoreductive effects of cisplatin also seem to contribute to the enhanced systemic effect. Finally, the results show that the abscopal effect is not precluded by the observed transient radiotherapy-induced lymphopenia. CONCLUSIONS: This is the first report showing that chemotherapy can enhance radiotherapy-induced abscopal effects in conjunction with ICB. This even applies to cisplatin, which is not classically immunogenic. Whereas previous studies have focused on how to effectively induce tumor-specific T cells, this study highlights that successful attraction of the induced T cells to nonirradiated tumors is also crucial for potent abscopal effects.


Assuntos
Antígeno B7-H1/antagonistas & inibidores , Linfócitos T CD8-Positivos/imunologia , Quimiocina CXCL10/antagonistas & inibidores , Quimiorradioterapia/métodos , Neoplasias do Colo/terapia , Melanoma Experimental/terapia , Receptores CXCR3/antagonistas & inibidores , Animais , Antineoplásicos/farmacologia , Antineoplásicos Imunológicos/farmacologia , Apoptose , Linfócitos T CD8-Positivos/efeitos dos fármacos , Proliferação de Células , Cisplatino/farmacologia , Neoplasias do Colo/imunologia , Neoplasias do Colo/patologia , Modelos Animais de Doenças , Humanos , Melanoma Experimental/imunologia , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Radioterapia/métodos , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
14.
J Immunother Cancer ; 7(1): 55, 2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30808414

RESUMO

BACKGROUND: Immunogenic radiotherapy (RT) can act synergistically with immune checkpoint blockers (ICBs). However, alternatives are needed for non-responding patients and those with pre-existing or ICB-induced autoimmune symptoms. Combination of RT with IL-2 could be an alternative. But IL-2 has a short half-life, and, by binding to its high-affinity receptor, it strongly stimulates immunosuppressive CD4+ Tregs and seems to promote potentially life-threatening vascular leakage. IL-2/anti-IL-2 complexes (IL-2c), which bind to the low-affinity receptor, have been reported to circumvent these disadvantages but they have not yet been thoroughly tested in conjunction with radiotherapy. METHODS: We evaluated, in three mouse models, the antitumoral effects induced by hypofractionated RT (hRT) plus IL-2c. We also used non-invasive imaging with a newly developed PET tracer based on therapeutically active IL-2c and a PD-L1 PET tracer for the theranostic evaluation of the treatment and its side effects. RESULTS: Treatment of mice bearing established B16 melanomas with hRT + IL-2c was superior to hRT + uncomplexed IL-2 or hRT alone; IL-2c alone was not effective. hRT + IL-2c was also synergistic in mice bearing C51 colon carcinomas or 4T1 mammary carcinomas. The better antitumor response correlated with increased tumor-specific CD8+ T cells and NK cells, but not CD4+ Tregs, in the irradiated tumor and in lymphoid organs. With the new PET tracer, we visualized the whole-body distribution of IL-2c and the bound receptors in naïve mice and tumor-bearing mice. Surprisingly, the tumor uptake was non-specific and only moderate. This prompted experiments demonstrating that specific IL-2c binding in the tumor is limited by IL-2 secreted by tumor-resident effector cells and that extratumorally expanded T and NK cells can infiltrate the irradiated tumor, which suggests that systemic immune activation considerably contributed to the reduction of tumor growth. Lastly, we show that a side effect of IL-2c treatment - a quite dramatic non-specific expansion of CD8+ T and NK cells - is only transient, and we visualized the associated splenomegaly as well as side effects on liver and lung by contrast-enhanced CT and PD-L1 PET. CONCLUSIONS: Our results show that the combination of immunogenic RT with IL-2c that are directed towards the low-affinity IL-2 receptor can be synergistic and more effective than the combination with uncomplexed IL-2. In addition, our theranostic evaluation provided insights into the mechanism of action and the side effects of IL-2c treatment.


Assuntos
Anticorpos Monoclonais/farmacologia , Interleucina-2/farmacologia , Neoplasias/patologia , Neoplasias/terapia , Hipofracionamento da Dose de Radiação , Transferência Adotiva , Animais , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Biomarcadores , Linhagem Celular Tumoral , Terapia Combinada , Modelos Animais de Doenças , Sinergismo Farmacológico , Humanos , Fatores Imunológicos/farmacologia , Imunofenotipagem , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Camundongos , Neoplasias/diagnóstico por imagem , Neoplasias/etiologia , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Tomografia por Emissão de Pósitrons , Especificidade da Espécie , Subpopulações de Linfócitos T/efeitos dos fármacos , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Hum Gene Ther ; 30(4): 446-458, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-29706119

RESUMO

CRISPR/Cas9-mediated programmed cell death protein 1 (PD-1) disruption in chimeric antigen receptor (CAR) T cells could be an appealing choice to improve the therapeutic efficacy of CAR T cells in an immunosuppressive tumor microenvironment. In most of the reported cases, Cas9 was delivered into T cells by way of electroporation with RNA or protein. However, transient expression of Cas9 by transfection with a plasmid encoding its gene is apparently simpler, as it avoids the steps of in vitro transcription of DNA or protein production. This study tried nucleofection into human primary T cells of plasmids encoding both CRISPR/Cas9 for disrupting the PD-1 gene and the piggyBac transposon system for expressing CD133-specific CAR in one reaction. Based on drug selection, CD133-specific CAR T cells were obtained in which, on average, 91.5% of the PD-1 gene sites were disrupted, but almost no Cas9 gene expression was found in the final engineered CAR T cells. The PD-1-deficient CD133-specific CAR T cells showed similar levels of cytokine secretion and improved proliferation and cytotoxicity in vitro, and enhanced inhibition of tumor growth in an orthotopic mouse model of glioma, compared to conventional CD133-CAR T cells. The described method could be useful for the production of PD-1-deficient CAR T cells for cancer immunotherapy.


Assuntos
Antígeno AC133/imunologia , Sistemas CRISPR-Cas , Inativação Gênica , Plasmídeos/genética , Receptor de Morte Celular Programada 1/genética , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Antígeno AC133/antagonistas & inibidores , Animais , Biomarcadores , Linhagem Celular Tumoral , Citotoxicidade Imunológica , Modelos Animais de Doenças , Edição de Genes , Técnicas de Silenciamento de Genes , Engenharia Genética , Humanos , Imunofenotipagem , Imunoterapia Adotiva , Ativação Linfocitária , Camundongos , Receptor de Morte Celular Programada 1/deficiência , Receptor de Morte Celular Programada 1/metabolismo , Receptores de Antígenos Quiméricos/genética , Especificidade do Receptor de Antígeno de Linfócitos T , Transfecção/métodos , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Cell ; 171(2): 385-397.e11, 2017 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-28919076

RESUMO

T cell receptor (TCR) signaling without CD28 can elicit primary effector T cells, but memory T cells generated during this process are anergic, failing to respond to secondary antigen exposure. We show that, upon T cell activation, CD28 transiently promotes expression of carnitine palmitoyltransferase 1a (Cpt1a), an enzyme that facilitates mitochondrial fatty acid oxidation (FAO), before the first cell division, coinciding with mitochondrial elongation and enhanced spare respiratory capacity (SRC). microRNA-33 (miR33), a target of thioredoxin-interacting protein (TXNIP), attenuates Cpt1a expression in the absence of CD28, resulting in cells that thereafter are metabolically compromised during reactivation or periods of increased bioenergetic demand. Early CD28-dependent mitochondrial engagement is needed for T cells to remodel cristae, develop SRC, and rapidly produce cytokines upon restimulation-cardinal features of protective memory T cells. Our data show that initial CD28 signals during T cell activation prime mitochondria with latent metabolic capacity that is essential for future T cell responses.


Assuntos
Antígenos CD28/metabolismo , Ativação Linfocitária , Mitocôndrias/metabolismo , Linfócitos T/citologia , Linfócitos T/imunologia , Animais , Carnitina O-Palmitoiltransferase , Inibidores Enzimáticos/farmacologia , Compostos de Epóxi/farmacologia , Humanos , Interleucina-15/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Antígenos de Linfócitos T/metabolismo , Estresse Fisiológico , Linfócitos T/metabolismo
17.
Oncotarget ; 7(34): 54883-54896, 2016 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-27448972

RESUMO

Dual PI3K/mTOR inhibitors do not effectively radiosensitize glioblastoma multiforme stem cells (GBM-SCs), but p53-proficient GBM-SCs are more responsive than p53-deficient ones. Here, we found that p53-proficient, but not p53-deficient, GBM-SCs lost stemness and differentiated after γ-irradiation combined with PI3K/mTOR inhibition; expression of FoxO proteins was also lost. FoxO overexpression inhibited the loss of stem cell markers under these conditions. Combined, but not single, FoxO1/3 deletion or pharmacological inhibition of FoxO transcriptional activity strongly reduced stem and progenitor marker expression, particularly that of Sox2. Binding of FoxO1 and FoxO3 to the sox2 regulatory regions was also found. However, combined FoxO1/3 knockdown strongly reduced self-renewal and post-treatment survival only in p53-proficient GBM-SCs. This suggests that FoxO1 and FoxO3 are crucial for functional stemness and post-treatment survival mainly in p53-proficient but not in p53-deficient GBM-SCs, and that these functions can be maintained through the loss of DNA damage-responsive p53 instead.


Assuntos
Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O3/metabolismo , Células-Tronco Neoplásicas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/genética , Apoptose/efeitos da radiação , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Sobrevivência Celular/efeitos da radiação , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O3/genética , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Imidazóis/farmacologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/efeitos da radiação , Inibidores de Fosfoinositídeo-3 Quinase , Quinolinas/farmacologia , Interferência de RNA , Radiação Ionizante , Serina-Treonina Quinases TOR/antagonistas & inibidores , Proteína Supressora de Tumor p53/genética
18.
Cancer Res ; 75(11): 2166-76, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25840983

RESUMO

Cancer stem cells (CSC) drive tumorigenesis and contribute to genotoxic therapy resistance, diffuse infiltrative invasion, and immunosuppression, which are key factors for the incurability of glioblastoma multiforme (GBM). The AC133 epitope of CD133 is an important CSC marker for GBM and other tumor entities. Here, we report the development and preclinical evaluation of a recombinant AC133×CD3 bispecific antibody (bsAb) that redirects human polyclonal T cells to AC133(+) GBM stem cells (GBM-SC), inducing their strong targeted lysis. This novel bsAb prevented the outgrowth of AC133-positive subcutaneous GBM xenografts. Moreover, upon intracerebral infusion along with the local application of human CD8(+) T cells, it exhibited potent activity in prophylactic and treatment models of orthotopic GBM-SC-derived invasive brain tumors. In contrast, normal hematopoietic stem cells, some of which are AC133-positive, were virtually unaffected at bsAb concentrations effective against GBM-SCs and retained their colony-forming abilities. In conclusion, our data demonstrate the high activity of this new bsAb against patient-derived AC133-positive GBM-SCs in models of local therapy of highly invasive GBM.


Assuntos
Anticorpos Biespecíficos/uso terapêutico , Antígenos CD/imunologia , Glioblastoma/terapia , Glicoproteínas/imunologia , Células-Tronco Neoplásicas/imunologia , Peptídeos/imunologia , Antígeno AC133 , Anticorpos Biespecíficos/imunologia , Antígenos CD/uso terapêutico , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/patologia , Carcinogênese/imunologia , Terapia Baseada em Transplante de Células e Tecidos/métodos , Epitopos/imunologia , Glioblastoma/imunologia , Glioblastoma/patologia , Glicoproteínas/uso terapêutico , Humanos , Imunoterapia/métodos , Células-Tronco Neoplásicas/patologia , Peptídeos/uso terapêutico
19.
Blood ; 125(5): 753-61, 2015 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-25414442

RESUMO

Autoimmune cytopenia is a frequent manifestation of primary immunodeficiencies. Two siblings presented with Evans syndrome, viral infections, and progressive leukopenia. DNA available from one patient showed a homozygous frameshift mutation in tripeptidyl peptidase II (TPP2) abolishing protein expression. TPP2 is a serine exopeptidase involved in extralysosomal peptide degradation. Its deficiency in mice activates cell death programs and premature senescence. Similar to cells from naïve, uninfected TPP2-deficient mice, patient cells showed increased major histocompatibility complex I expression and most CD8(+) T-cells had a senescent CCR7-CD127(-)CD28(-)CD57(+) phenotype with poor proliferative responses and enhanced staurosporine-induced apoptosis. T-cells showed increased expression of the effector molecules perforin and interferon-γ with high expression of the transcription factor T-bet. Age-associated B-cells with a CD21(-) CD11c(+) phenotype expressing T-bet were increased in humans and mice, combined with antinuclear antibodies. Moreover, markers of senescence were also present in human and murine TPP2-deficient fibroblasts. Telomere lengths were normal in patient fibroblasts and granulocytes, and low normal in lymphocytes, which were compatible with activation of stress-induced rather than replicative senescence programs. TPP2 deficiency is the first primary immunodeficiency linking premature immunosenescence to severe autoimmunity. Determination of senescent lymphocytes should be part of the diagnostic evaluation of children with refractory multilineage cytopenias.


Assuntos
Envelhecimento/imunologia , Aminopeptidases/imunologia , Anemia Hemolítica Autoimune/genética , Dipeptidil Peptidases e Tripeptidil Peptidases/imunologia , Mutação da Fase de Leitura , Síndromes de Imunodeficiência/genética , Serina Endopeptidases/imunologia , Trombocitopenia/genética , Aminopeptidases/deficiência , Aminopeptidases/genética , Anemia Hemolítica Autoimune/complicações , Anemia Hemolítica Autoimune/imunologia , Anemia Hemolítica Autoimune/patologia , Animais , Apoptose , Sequência de Bases , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/patologia , Criança , Pré-Escolar , Consanguinidade , Dipeptidil Peptidases e Tripeptidil Peptidases/deficiência , Dipeptidil Peptidases e Tripeptidil Peptidases/genética , Feminino , Fibroblastos/imunologia , Fibroblastos/metabolismo , Fibroblastos/patologia , Expressão Gênica , Humanos , Síndromes de Imunodeficiência/complicações , Síndromes de Imunodeficiência/imunologia , Síndromes de Imunodeficiência/patologia , Masculino , Camundongos , Camundongos Knockout , Dados de Sequência Molecular , Perforina/genética , Perforina/imunologia , Serina Endopeptidases/deficiência , Serina Endopeptidases/genética , Irmãos , Proteínas com Domínio T/genética , Proteínas com Domínio T/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linfócitos T/patologia , Trombocitopenia/complicações , Trombocitopenia/imunologia , Trombocitopenia/patologia
20.
Oncotarget ; 6(1): 171-84, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25426558

RESUMO

The AC133 epitope of CD133 is a cancer stem cell (CSC) marker for many tumor entities, including the highly malignant glioblastoma multiforme (GBM). We have developed an AC133-specific chimeric antigen receptor (CAR) and show that AC133-CAR T cells kill AC133+ GBM stem cells (GBM-SCs) both in vitro and in an orthotopic tumor model in vivo. Direct contact with patient-derived GBM-SCs caused rapid upregulation of CD57 on the CAR T cells, a molecule known to mark terminally or near-terminally differentiated T cells. However, other changes associated with terminal T cell differentiation could not be readily detected. CD57 is also expressed on tumor cells of neural crest origin and has been preferentially found on highly aggressive, undifferentiated, multipotent CSC-like cells. We found that CD57 was upregulated on activated T cells only upon contact with CD57+ patient-derived GBM-SCs, but not with conventional CD57-negative glioma lines. However, CD57 was not downregulated on the GBM-SCs upon their differentiation, indicating that this molecule is not a bona fide CSC marker for GBM. Differentiated GBM cells still induced CD57 on CAR T cells and other activated T cells. Therefore, CD57 can apparently be upregulated on activated human T cells by mere contact with CD57+ target cells.


Assuntos
Antígenos CD/metabolismo , Neoplasias Encefálicas/metabolismo , Antígenos CD57/metabolismo , Glioblastoma/metabolismo , Glicoproteínas/metabolismo , Peptídeos/metabolismo , Antígeno AC133 , Animais , Neoplasias Encefálicas/patologia , Linfócitos T CD8-Positivos/citologia , Diferenciação Celular , Linhagem Celular Tumoral , Proliferação de Células , Citometria de Fluxo , Glioblastoma/patologia , Humanos , Masculino , Camundongos , Camundongos Nus , Transplante de Neoplasias , Células-Tronco Neoplásicas/citologia , Receptores de Antígenos/metabolismo , Linfócitos T/imunologia , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA